http://www.sublata.com/

Возрастание и убывание функций. Точки экстремума Определение

  Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).

  Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

 Определение. Точки максимума и минимума функции называются точками экстремума.

  Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

 

  Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

 Тогда при достаточно малых положительных Dх>0 верно неравенство:

, т.е.

  Тогда

  По определению:

 

Т.е. если Dх®0, но Dх<0, то f¢(x1) ³ 0, а если Dх®0, но Dх>0, то f¢(x1) £ 0.

 [an error occurred while processing this directive]

  А возможно это только в том случае, если при Dх®0 f¢(x1) = 0.

 

Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично.

 

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.

Пример: f(x) = ôxô Пример: f(x) =  

 

 y y

 

 

 

 

  x

 

В точке х = 0 функция имеет минимум, но В точке х = 0 функция не имеет ни

не имеет производной. максимума, ни минимума, ни произ-

  водной.

 

 Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.

 Теорема. (Достаточные условия существования экстремума)

 Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

  Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

  Доказательство.

 

Пусть

[an error occurred while processing this directive]

По теореме Лагранжа: f(x) – f(x1) = f¢(e)(xx1), где x < e < x1.

  Тогда: 1) Если х < x1, то e < x1f¢(e)>0; f¢(e)(xx1)<0, следовательно

 

f(x) – f(x1)<0  или f(x) < f(x1).

 

  2) Если х > x1, то e > x1 f¢(e)<0; f¢(e)(xx1)<0, следовательно

 

f(x) – f(x1)<0  или f(x) < f(x1).

Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.

 

 Доказательство теоремы для точки минимума производится аналогично.

 

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

1)      Найти критические точки функции.

2)      Найти значения функции в критических точках.

3)      Найти значения функции на концах отрезка.

4)      Выбрать среди полученных значений наибольшее и наименьшее.

Множество точек на плоскости называется выпуклым, если отрезок, соединяющий любые две точки этого множества, целиком содержится в этом множестве. Примерами выпуклых множеств являются : треугольник, отрезок, полуплоскость, вся плоскость.
На главную