Интегральное исчисление. Первообразная функция Определение

  Определение: Функция F(x) называется первообразной функцией  функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F¢(x) = f(x).

 

  Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

 

Неопределенный интеграл.

 

  Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение

  Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

  Свойства:

1.

2.

3.

4.  где u, v, w – некоторые функции от х.

6.     

Достаточное условие выпуклости . Если вторая производная дважды дифференцируемой функции положительна (отрицательна) на множестве X, то функция выпукла вниз (вверх) на этом множестве.
На главную