Интеграл произведения синусов и косинусов различных аргументов

Пример.

  Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

 

Интеграл вида  если функция R является нечетной относительно sinx. Свойства логарифмов Логарифмом числа b по основанию a ( b > 0, ) называется показатель степени, в который нужно возвести число a , чтобы получить число b : Метод Гаусса. Рассмотрим систему m линейных уравнений с n неизвестными.

 

  По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

  Пример.

Интеграл вида функция R четная относительно sinx и cosx.

 

  Для преобразования функции R в рациональную используется подстановка

t = tgx.

Тогда

 

  Пример.

 

 

Интеграл произведения синусов и косинусов различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

  Пример.

  Пример.

  Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций.

  Пример.

  Пример.

  Иногда применяются некоторые нестандартные приемы.

  Пример.

Итого 

 

Двойной интеграл представляет собой предел двумерной интегральной суммы, причем можно показать, что на значение этого предела не влияют добавки к слагаемым интегральной суммы, являющиеся бесконечно малыми высшего порядка малости
На главную