Подстановки Эйлера Интегрирование биноминальных дифференциалов

2 способ. Подстановки Эйлера. (1707-1783)

1)      Если а>0, то интеграл вида  рационализируется подстановкой

.

2)      Если a<0 и c>0, то интеграл вида  рационализируется подстановкой .

3)      Если a<0 , а подкоренное выражение раскладывается на действительные множители a(xx1)(xx2), то интеграл вида  рационализируется подстановкой   Предел функции в точке Пусть функция f(x) определена в некоторой окрестности точки x0 (возможно, определена на R), но в самой точке x0 функция f(x) может быть и не определена.

Отметим, что подстановки Эйлера неудобны для практического использования,

т.к. даже при несложных подинтегральных функциях приводят к весьма громоздким вычислениям. Эти подстановки представляют скорее теоретический интерес.

 

3 способ. Метод неопределенных коэффициентов.

Рассмотрим интегралы следующих трех типов:

где P(x) – многочлен, n – натуральное число.

 

Причем интегралы II и III типов могут быть легко приведены к виду интеграла I типа.

 

 Далее делается следующее преобразование:

 

в этом выражении Q(x)- некоторый многочлен, степень которого ниже степени многочлена P(x), а l - некоторая постоянная величина.

  Для нахождения неопределенных коэффициентов многочлена Q(x), степень которого ниже степени многочлена P(x), дифференцируют обе части полученного выражения, затем умножают на  и, сравнивая коэффициенты при одинаковых степенях х, определяют l и коэффициенты многочлена Q(x).

  Данный метод выгодно применять, если степень многочлена Р(х) больше единицы. В противном случае можно успешно использовать методы интегрирования рациональных дробей, рассмотренные выше, т.к. линейная функция является производной подкоренного выражения.

 

Если f(x) имеет в данной точке x производную, то существует касательная к графику функции f(x) в точке M( x,f(x)) , причем угловой коэффициент этой касательной равен производной f'(x).
На главную