Вычисление площадей плоских фигур

 

  Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”. Теоремы о пределах функций Арифметические операции над функциями, имеющими предел в точке а, приводят к функциям, также имеющим предел в этой точке.

  Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

  Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.

 

  Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)

Для того чтобы функция была дифференцируема в точке x, необходимо и достаточно, чтобы она имела в этой точке конечную производную.
На главную