Геометрические приложения определенного интеграла Пример решения задач

  Пример: Найти длину окружности, заданной уравнением x2 + y2 = r2.

 

1 способ.  Выразим из уравнения переменную у. 

Найдем производную

Тогда

Тогда S = 2pr. Получили общеизвестную формулу длины окружности. Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z= f (xy) в точке (xy), вызванным приращениями аргументов  и , называется выражение .

 

2 способ. Если представить заданное уравнение в полярной системе координат, то получим: r2cos2j + r2sin2j = r2, т.е. функция r = f(j) = r,  тогда

Для того чтобы функция была дифференцируема в точке x, необходимо и достаточно, чтобы она имела в этой точке конечную производную.
На главную