Вычисление объема тела по известным площадям его параллельных сечений Примеры

Пример: Найти объем шара радиуса R.

 

 

В поперечных сечениях шара получаются окружности переменного радиуса у. В зависимости от текущей координаты х этот радиус выражается по формуле .

Тогда функция площадей сечений имеет вид: Q(x) = . Решение примерного варианта контрольной работы

Получаем объем шара:

.

 

  Пример: Найти объем произвольной пирамиды с высотой Н и площадью основания S.

 

 

 

 При пересечении пирамиды плоскостями, перпендикулярными высоте, в сечении получаем фигуры, подобные основанию. Коэффициент подобия этих фигур равен отношению x/H, где х – расстояние от плоскости сечения до вершины пирамиды.

 Из геометрии известно, что отношение площадей подобных фигур равно коэффициенту подобия в квадрате, т.е.

[an error occurred while processing this directive]

Отсюда получаем функцию площадей сечений:

Находим объем пирамиды:

Для того чтобы функция была дифференцируема в точке x, необходимо и достаточно, чтобы она имела в этой точке конечную производную.
На главную