Производная по направлению Примеры решения задач

  Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).

 

  Решение. Прежде всего необходимо определить координаты вектора .

 

=(3-1; 0-2) = (2; -2) = 2.

Далее определяем модуль этого вектора: Поверхностные интегралы 2 рода. Пусть через замкнутую поверхность проходит поток жидкости или тепла. Математика лекции и задачи

 

=

Находим частные производные функции z в общем виде:

 

Значения этих величин в точке А :

 

Для нахождения направляющих косинусов вектора  производим следующие преобразования:

=

За величину  принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.

Отсюда получаем значения направляющих косинусов вектора :

cosa = cosb = -

 

Окончательно получаем:  - значение производной заданной функции по направлению вектора .

 

Производная непрерывной функции не обязательно непрерывна. Если функция имеет непрерывную производную на некотором множестве X, то функция называется гладкой на этом множестве. Если производная допускает конечное число точек разрыва (причем первого рода), то такая функция называется кусочно гладкой.
На главную