Кратные интегралы. Условия существования двойного интеграла

Сформулируем достаточные условия существования двойного интеграла.

  Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл  существует.

 

 

  Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл  существует.

 Тройной интеграл Изменить порядок интегрирования

Свойства двойного интеграла.

 

1)

 

2)

 

3)  Если D = D1 + D2, то

 

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

 

 

5)  Если f(x, y) ³ 0 в области D, то  .

 

6) Если f1(x, y) £ f2(x, y), то .

 

7)  .

Производные и дифференциалы высших порядков Предположим, что функция f'(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй произвоьдной и обозначают f(2)(x), f''(x) или y(2), y''(x). Аналогично можно ввести понятие второй , третьей и т. д. производных.
На главную