Интегральное исчисление Тройной интеграл

 

  При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

 Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве. Системы координат в пространстве: декартовы, цилиндрические и сферические координаты

 

 

  Суммирование производится по области v, которая ограничена некоторой поверхностью j(x, y, z) = 0.

 

 

Здесь х1 и х2 – постоянные величины, у1 и у2 – могут быть некоторыми функциями от х или постоянными величинами, z1 и z2 – могут быть функциями от х и у или постоянными величинами.

  [an error occurred while processing this directive]

 

  Пример. Вычислить интеграл

 

 

Замена переменных в тройном интеграле.

  Операция замены переменных в тройном интеграле аналогична соответсвующей операции для двойного интеграла.

  Можно записать:

 

 

  Наиболее часто к замене переменной в тройном интеграле прибегают с целью перейти от декартовой прямоугольной системы координат к цилиндрической или сферической системе.

Производные и дифференциалы высших порядков Предположим, что функция f'(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй произвоьдной и обозначают f(2)(x), f''(x) или y(2), y''(x). Аналогично можно ввести понятие второй , третьей и т. д. производных.
На главную