Формула Маклорена

 Формулой Маклорена называется  формула Тейлора при а = 0:

 

 

Мы получили так называемую формулу Маклорена с остаточным членом в форме Лагранжа.

  Следует отметить, что при разложении функции в ряд применение формулы Маклорена предпочтительнее, чем применение непосредственно формулы Тейлора, т.к. вычисление значений производных в нуле проще, чем в какой- либо другой точке, естественно, при условии, что эти производные существуют.

Группа перестановок. Знак перестановки.

 Однако, выбор числа а очень важен для практического использования. Дело в том, что при вычислении значения функции в точке, расположенной относительно близко к точке а, значение, полученное по формуле Тейлора, даже при ограничении тремя – четырьмя первыми слагаемыми, совпадает с точным значением функции практически абсолютно. При удалении же рассматриваемой точки от точки а для получения точного значения надо брать все большее количество слагаемых формулы Тейлора, что неудобно.

 Т.е. чем больше по модулю значение разности (х – а) тем более точное значение функции отличается от найденного по формуле Тейлора.

  Кроме того, можно показать, что остаточный член Rn+1(x) является бесконечно малой функцией при х®а, причем долее высокого порядка, чем (х – а)m, т.е.

 

.

 Таким образом, ряд Маклорена можно считать частным случаем ряда Тейлора.

Если производные f'(x),g'(x) удовлетворяют тем же требованиям, что и сами функции, то правило Лопиталя можно применить повторно, т.е. предел отношения первых производных можно заменить пределом отношения вторых производных и т.д.
На главную