Определение деформаций при прямом поперечном изгибе балки Ц е л ь р а б о т ы: экспериментальное определение деформаций балки при плоском поперечном изгибе и сравнение их с деформациями, вычисленными теоретическим расчетом. Прямым изгибом называют такой изгиб, при котором плоскость действия изгибающих нагрузок проходит через одну из главных осей инерции поперечного сечения балки. Изгиб называют поперечным, если в поперечных сечениях балки наряду с изгибающим моментом возникают и поперечные силы. При прямом изгибе ось балки и после деформации остается в плоскости внешних сил.

Определение деформаций при косом изгибе балки Определить опытным путем величину и направление прогиба свободного конца консоли при косом изгибе и сравнить полученные результаты с величинами, вычисленными теоретически. Косым изгибом называют такой вид изгиба, при котором плоскость действия внешних нагрузок (силовая плоскость) не совпадает ни с одной из главных центральных осей инерции поперечного сечения бруса.

Определение момента в защемлении статически неопределимой балки Экспериментальное определение момента в защемлении статически неопределимой балки и сравнение его с моментом в защемлении, полученным теоретическим путем. Балки, для которых определение опорных реакций не может быть произведено лишь при помощи уравнений статического равновесия, называют статически неопределимыми. Кроме уравнений равновесия для раскрытия статической неопределимости составляют дополнительные уравнения – условия совместности перемещений. 

Проверка интеграла Мора на примере плоской статически неопределимой рамы Опытное определение величины горизонтального перемещения подвижной опоры статически определимой рамы и распорного усилия статически неопределимой рамы. Сравнение этих величин с данными, полученными по теоретическим формулам.

Проверка теории изгибающего удара Опытное определение динамического коэффициента при изгибающем ударе по середине пролета двухопорной балки и сравнение его с динамическим коэффициентом, полученным расчетом.

Определение критической силы при продольном изгибе Изучение явления потери устойчивости при осевом сжатии прямого стержня и сравнение критической силы, определенной опытным путем и вычисленной по формуле Эйлера при различных способах закрепления стержня. Деформированное состояние стержня, представляющее собой равновесие между внешними и внутренними силами, может быть не только устойчивым, но и неустойчивым. Если при любом возможном отклонении от состояния равновесия внутренние силы в деформированном стержне изменяются так, что он имеет стремление возвратиться к первоначальному прямолинейному состоянию и в итоге к нему возвращается, то упругое равновесие будет устойчивым.

Обработка и предоставление результатов измерений Физической величиной называют свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. При этом индивидуальность в количественном отношении следует понимать в том смысле, что свойство может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

Построение эпюры напряжений

Расчет на жесткость стержня постоянного сечения. Для стержня из дюралюминия Д16, площадью сечения 10 см2, представленного на рисунке 1.4, необходимо построить эпюры продольных сил и осевых перемещений, выполнить расчет на жесткость. Построение эпюр продольных сил и перемещений.

Расчет на жесткость

Расчет на прочность

Расчет на прочность и жесткость при растяжении - сжатии

Выбор материала и допускаемых напряжений.

Расчет физико-механических характеристик материала.

Диаграмма растяжения дюралюминия Д16 изображена на рис 1.1. Образец длиной l0=80 мм и диаметром d0=8 мм разрушается с образованием шейки d1=5,9 мм, что свидетельствует о том, что материал пластичный. Площадь поперечного сечения образца до испытаний:

после разрушения:

относительное остаточное

удлинение:

Относительное остаточное

сужение:

Определим основные характеристики прочности.

Предел пропорциональности

Условный предел текучести

Предел прочности (временное сопротивление σв)

 

Расчет допускаемых напряжений

Допускаемое напряжение [σ] выбираем, как некоторую долю предельного напряжения σпред, то есть 

где n – коэффициент запаса прочности.

Рекомендуемые знания n = 1,5 ÷ 2,5. Примем n = 1,5, тогда

МПа

 

  Проектировочный расчет на прочность ступенчатого стержня.

Для ступенчатого стержня представленного на рис 1.2 необходимо построить эпюру продольных сил, построить эпюру напряжений, отнесенную к площади А0, найти А0 из условия прочности.

Построение эпюры продольных сил.

Составим уравнение равновесия системы (рис 1.2)

, откуда

  Разобьем стержень на 3 участка АВ, ВС, СD, проведем на каждом из них произвольные сечения с координатами z1, z2, z3.

Участок АВ ( 0 ≤ z1 ≤ l1 = 0,2 м ). Из равновесия оставленной верхней части следует, что N(z1) = RA – qz1.

Значение N(z1) в начале участка т.А и в конце участка т.В равна N(z1=0) = RA = 48 кН и N(z1=l1) = RA – ql1 = 48 – 10 ∙ 0,2 = 46 кН.

На участке ВС ( 0 ≤ z2 ≤ l2 = 0,6 м ). Из условия равновесия получим N(z1) = RA – q(l1 + z2).

Значение N(z2) в начале участка т.В и в конце участка т.С равна N(z2=0) = =RA – ql1 = 48 – 10 ∙ 0,2 = 46 кН и N(z2=l2) = RA – q(l1 + l2) = 48 – 10(0,2 + 0,6) = =48 – 8 = 40 кН.

На участке СD ( 0 ≤ z3 ≤ l3 = 0,5 м ). Отбросим верхнюю часть, ее действие заменим продольной силой N(z3). Из условия равновесия следует

N(z3) = Р1 + q(l3 – z3).

Функция N(z3) представляет линейную зависимость. Значение N(z3) в начале участка т.D и в конце участка т.С равна N(z3=l3) = Р1 = 35 кН и N(z3=0) = Р1 + ql3 = 35 + 10 ∙ 0,5 = 35 + 5 = 40 кН.

По полученным данным построим ЭN (рис 1.3, а)


На главную