Задачи начертательной геометрии Комплексный чертеж Первая и вторая позиционные задачи Пересечение поверхности и плоскости Развертки поверхностей Аксонометрические проекции

Пересечение поверхностей второго порядка

В общем случае две поверхности второго порядка пересекаются по пространственной кривой четвертого порядка. Следует отметить, что при некоторых особых положениях относительно друг друга поверхности второго порядка могут пересекаться по плоским кривым второго порядка, то есть пространственная кривая пересечения распадается на две плоские кривые. Условия распадения кривой четвертого порядка на две кривые второго порядка формулируются в виде следующих теорем.

Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то они пересекаются и еще по одной плоской кривой. Иллюстрацией этой теоремы является рис. 12.19, на котором показаны фронтальные проекции сферы и эллиптического конуса, пересекающихся по двум окружностям – m(m2) и n(n2). Окружность m параллельна основанию (плоскости окружности) конической поверхности, а окружность n построена в соответствии с теоремой 1.

Теорема 2 (теорема о двойном соприкосновении). Если две поверхности второго порядка имеют касание в двух точках, то линия их взаимного пересечения распадается на две плоские кривые второго порядка.

 Плоскости этих кривых пройдут через прямую, соединяющую точки касания. На рис. 12.20 показано построение линии пересечения конической поверхности вращения и эллиптического цилиндра (оси поверхностей пересекаются и параллельны П2). Линии пересечения - эллипсы – лежат во фронтально проецирующих плоскостях, проходящих через прямую АВ, соединяющую точки касания А и В, а также точки 1, 2 и 3, 4 (точки пересечения очерков поверхностей).

Теорема 3 (теорема Монжа). Если две поверхности второго порядка описаны около третьей поверхности второго порядка или вписаны в нее, то линия их взаимного пересечения распадается на две плоские кривые. Плоскости этих кривых пройдут через прямую, соединяющую точки пересечения линий касания. Эта теорема является частным случаем теоремы 2. Если оси пересекающихся поверхностей вращения параллельны какой – либо плоскости проекций, то на эту плоскость кривые линии проецируются в отрезки прямых.

На рис. 12.21 приведен пример построения линии пересечения двух конических поверхностей вращения, оси которых пересекаются и параллельны П2, на основании теоремы Монжа. Исходные поверхности описаны вокруг сферы и имеют с ними касание по окружностям t(t2) и k(k2). Эти окружности пересекаются в точках 1 и 2. Плоскости линий пересечения проходят через прямую 12 и точки пересечения очерков поверхностей А, D, В и С.

 

 

 

 

 

 


Ортогональная (прямоугольная) изометрическая проекция