Двигатель внутреннего сгорания Электрический ток в металлах Электрическое сопротивление проводников Астрономия Физика атома Два типа ядерной реакции Цепная ядерная реакция деления. Проблемы развития атомной энергетики

Два типа ядерной реакции. Энергия ядерной реакции.

Процессы деления тяжелых ядер на более легкие и слияния легких ядер в более тяжелые называют ядерными реакциям (ядерная реакция деления и реакция синтеза ядер). В этих реакциях выделяется большое количество энергии, в настоящее время они осуществлены на практике и используются как в мирных, так и в военных целях.

 Рассмотрим, для примера, широко известную реакцию деления ядра изотопа урана при попадании в него нейтрона на ядро изотопа бария и изотопа криптона с вылетом трех нейтронов

 . (3.4)

 Для данной реакции, учитывая наличие у компонентов реакции кинетической энергии, согласно закону сохранения энергии можно записать

 (3.5)

где Екин и Е’кин – кинетические энергии всех исходных и конечных продуктов реакции, а ЕЯ() и ЕN – энергии ядра и нуклона в покое. Учитывая уравнение Эйнштейна E=mc2 и определение удельной энергии связи, последнее равенство можно переписать в следующем виде

 (3.4)

где mo( ) – массы покоя соответствующих ядер или нейтрона. Зная удельные энергии связи δЕсв( ) разных ядер (Рис.17.), несложно рассчитать добавочную энергию DЕкин = Е’кин - Екин, выделяемую в этой реакции, она равна »200 МэВ. Эта энергия передается образовавшимся ядрам и трем нейтронам в виде кинетической энергии. Аналогично можно рассмотреть реакцию слияния, например, двух ядер дейтерия и трития в ядро гелия

, (3.5)

расчет показывает, что при этом возникает добавочная энергия в количестве 17,6 МэВ, которая переходит в кинетическую энергию гелия и образовавшегося нейтрона. Для сравнения: энергия связи электронов в атомах порядка 10эВ, а энергия, выделяемая в химической реакции при окислении атома углеводорода (реакция, происходящая при сжигании углеводородного сырья)  равна всего 100 эВ. Эти цифры неоспоримо показывают, где находится источник большого количества энергии и перспективность получения энергии за счет ядерных реакций на атомных электростанциях.

 

Радиоактивность. Закон радиоактивного распада. Альфа, бета, гамма – излучения.

 Ядерные реакции распада некоторых тяжелых ядер могут происходить самопроизвольно (без внешнего воздействия), при этом кроме нейтронов могут испускаться и другие частицы. Такие ядра называют радиактивными, а явление самопроизвольного (спонтанного) распада ядер с испусканием одной или нескольких частиц называют радиоактивностью. Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, называют дочерними. Дочерние ядра также могут оказаться радиоактивными. Вследствие распада число радиоактивных ядер с течением времени уменьшается.

Закон этого уменьшения можно получить теоретически на основе статистических представлений, если учесть, что все ядра идентичны по характеру процессов внутри их. Поэтому любое из ядер с одинаковой вероятностью может распасться в любой момент времени, и распад каждого ядра никаким образом не влияет на распады других ядер. Вероятность распада одного ядра за 1с называется постоянной распада и обозначается буквой λ. Как показали исследования, ядра различных элементов имеют разные постоянные распада и они не зависят ни от каких либо внешних воздействий. Если имеется N радиоактивных ядер с постоянной распада равной λ, то за малый промежуток времени dt из них должны испытать распад dN ядер в количестве пропорциональном λ, N и dt:

-dN = λNdt , (3.6)

где знак – перед dN показывает уменьшение числа ядер.  Интегрирование этого уравнения дает

N = Noe-λt , (3.7)

 где Nо – число ядер в момент t=0, N – число оставшихся (не распавшихся) ядер к моменту t. Это соотношение называют основным законом радиоактивного распада. Как видно, число нераспавшихся ядер убывает со временем экспоненциально. Наряду с постоянной λ, процесс радиоактивного распада характеризуют еще периодом полураспада Т. Период полураспада Т – это время, за которое распадается половина первоначального количества ядер. Оно определяется условием No/2 = Noe-λТ, откуда следует, что

T = ln2/λ = 0,693/λ. (3.8)

Период полураспада для различных ядер может иметь величины от долей секунды (10-7 с) до астрономических времен (1010 лет).

К основным видам радиоактивности относятся альфа, бета и гамма распады, они были открыты французским физиком Беккерелем в 1896г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку. Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температуры, давления) и от того, находится ли уран в каких-либо химических соединениях. Отклонение излучения в электрическом поле показало, что оно разделяется на a-частицы (ядра гелия), b- частцы (электроны) и g- лучи (электромагнитное излучение с очень малой длиной волны ). Атомное ядро, испускающее g-кванты, a-, b- или другие частицы, является нестабильным или радиоактивным ядром. В природе существует порядка трехсот стабильных атомных ядер, остальные ядра радиоактивны, обычно, это радиоактивные изотопы (радиоизотопы).

При альфа-распаде происходит самопроизвольное испускание ядром α –частицы (ядра ), и это происходит по схеме

, (3.9)

где X – символ материнского ядра, Y –дочернего.

Установлено, что α – частицы испускают только тяжелые ядра, где имеется избыток нейтронов. При распаде, α – частицы уносят почти всю энергию и только малая часть (несколько процентов) остается у дочернего ядра. Поэтому, кинетическая энергия α – частицы может быть очень большой (4-10 МэВ). В воздухе при нормальном давлении пробег α - частиц составляет несколько сантиметров (их энергия расходуется на образование ионов). Покидая ядро, частице приходится преодолевать потенциальный барьер, высота которого превосходит ее энергию, это происходит благодаря туннельному эффекту.

Бета-распад - это самопроизвольный процесс, в котором материнское ядро превращается в другое ядро с тем же массовым числом А, но с зарядовым числом Z, отличающимся от исходного на ±1. Это связано с тем, что β – распад сопровождается испусканием электрона или позитрона (позитрон - элементарная частица сходная во всем с электроном, но имеющая положительный заряд, она является античастицей электрона) или захватом электрона из оболочки атома

 (3.7)

Число бета-активных ядер, известных в настоящее время, составляет около полутора тысяч, но только 20 из них являются естественными бета-радиоактивными изотопами. Все остальные получены искусственным путем.

Различают три типа b-распада - электронный, позитронный и К-захват: электронный β- – распад, это реакция, в которой ядро испускает электрон и его зарядовое число Z становится Z+1; позитронный β+ - распад, это реакция, в которой ядро испускает позитрон и его зарядовое число Z становится Z-1; К – захват, это процесс, в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К – оболочки) и его зарядовое число Z становится равным Z – 1, на освободившееся место в К – оболочке переходит электрон с другой оболочки, и поэтому К – захват всегда сопровождается рентгеновским излучением.

Так как в ядрах отсутствуют электроны и позитроны, очевидно, что они возникают в результате процессов, происходящих внутри ядра с протонами и нейтронами. Такие реакции были экспериментально обнаружены при изучении излучений атомных реакторов, причем для их объяснения ученому Паули в 1931г. пришлось предположить о существовании новых частиц с малой массой и не имеющих заряда. Эти частицы должны очень слабо взаимодействовать с другими частицами и обладать большой проникающей способностью, поэтому они были обнаружены только в 1956г. и названы нейтрино (n) и антинейтрино (n~). С помощью этих частиц три разновидности β – распада могут быть обусловлены следующими превращениями нуклонов в ядре:

  распад,

 распад, (3.8) 

  распад. 

 

Наличие этих частиц позволяет объяснить наблюдаемое непрерывное распределение электронов по кинетической энергии и их произвольный импульс. Если бы не было нейтрино, то электроны имели бы строго определенный импульс, равный импульсу дочернего ядра, в реальности же, энергия и импульс распределяется между электроном и нейтрино в самых разных пропорциях, поэтому в экспериментах испускаемые электроны имеют достаточно произвольные импульс и энергию.

Наблюдать нейтрино очень сложно, так как они почти не взаимодействуют с другими частицами и, согласно теоретическим оценкам, нейтрино с энергией 1 МэВ могут пробегать без столкновения в воде порядка 1000км. Такие нейтрино свободно пронизывают Солнце и, тем более, Землю. Чтобы зарегистрировать процесс захвата нейтрино другими частицами, необходимо иметь огромные плотности их потока. Это стало возможным только после создания ядерных реакторов, в которых при ядерных реакциях возникают мощные потоков нейтрино.

Гамма-распад заключается в испускании возбужденным ядром гамма – квантов, энергия которых варьируется в пределах от 10КэВ до 5МэВ. Гамма-излучение - это не самостоятельный тип радиоактивности, оно сопровождает процессы α и β – распада. Существенно, что спектр испускаемых гамма – квантов дискретный. Это объясняется тем, что согласно оболочной модели, ядро имеет дискретные энергетические уровни возможных состояний и переход ядра из возбужденного состояния в состояние с меньшей энергией должен по квантовой механике сопровождаться испусканием кванта электромагнитного излучения. Вследствие дискретности энергий состояний, спектр излучаемых частот тоже должен быть дискретен.


Физика, начертательная геометрия - лекции и примеры решения задач