Двигатель внутреннего сгорания Электрический ток в металлах Электрическое сопротивление проводников Астрономия Физика атома Два типа ядерной реакции Цепная ядерная реакция деления. Проблемы развития атомной энергетики

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ.

Основной закон электромагнитной индукции.

Величайший физик XIX века Майкл Фарадей считал, что между электрическими и магнитными явлениями существует тесная взаимосвязь. Ампер, Био и другие ученые выяснили одну сторону этой взаимосвязи, с которой мы уже знакомы, а именно – магнитное действие тока. Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.

Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит (рис.3.1). Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током. Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром. Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.

Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.

Дальнейшие исследования индукционного тока в проводящих контурах различной формы и размеров показали справедливость следующего закона Фарадея:

Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:


 где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Рассмотрим пример, демонстрирующий данный закон (рис. 3.2). В контуре 1 создается ток силы I1, его можно изменять с помощью реостата R. Этот ток создает магнитное поле, пронизывающее контур 2. Если мы будем увеличивать ток I1, поток Фm магнитной индукции через контур 2 будет, изменяясь, расти. Это приведет к появлению в контуре 2 индукционного тока I2’, регистрируемого гальванометром G и направленного противоположно I1. Если, наоборот, уменьшать I1, то и поток через контур 2 будет уменьшаться, что приведет к появлению в нем индукционного тока I2’’, направленного так же, как I1.

Как определить направление индукционного тока? Профессор Петербургского университета Э.Х.Ленц в 1833 г. установил, что индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Это – существенный физический факт, демонстрирующий стремление системы сопротивляться изменению состояния.

Вернемся к рис. 3.2. При увеличении тока I1, т.е. возрастании потока магнитной индукции Фm, направленного вправо, когда dФm/dt >0, в контуре 2 возникает индукционный ток I2’, создающий собственный магнитный поток, направленный влево (данный поток стремится уменьшить Фm). Току I2’ соответствует εi< 0. Мы можем определить направление тока I2’ по правилу правого винта. Если ток в контуре 1 уменьшать, то dФm/dt < 0, и аналогично в контуре 2 возникает εi> 0 и ток I2”, собственный магнитный поток которого направлен так же, как и внешний поток Фm, потому что он стремится поддержать внешний поток постоянным, добавляя его.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:


 Это выражение представляет собой основной закон электромагнитной индукции.

При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.

Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности:


Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае


Немецкий физик Г.Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt. 

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

3.2. Явление самоиндукции.

Вокруг любого проводника с током существует собственное магнитное поле, которое пронизывает этот проводник. При изменении тока в контуре также меняется и собственный магнитный поток через сам этот контур. Отсюда следует, что в контуре индуцируется э.д.с. и появляется дополнительный индукционный ток. Возникающая в таких случаях э.д.с., называется э.д.с. самоиндукции, а само явление – явлением самоиндукции.

Самоиндукция – это частный случай электромагнитной индукции. В соответствии с законом Био-Савара-Лапласа магнитная индукция В пропорциональна силе тока, вызывающего это поле. Отсюда следует, что полный магнитный поток Фm, сцепленный с контуром, должен быть пропорционален силе тока I в контуре: Фm = LI. Коэффициент пропорциональности L между силой тока и магнитным потоком называется индуктивностью контура. Индуктивность зависит от геометрии контура (от его формы и размеров), а также от магнитной проницаемости окружающей контур среды. Если контур жесткий и поблизости от него нет ферромагнетиков, то его индуктивность – постоянная величина L=const. Единицей измерения индуктивности в СИ является генри (Г): 1Г - индуктивность такого контура, у которого при силе текущего в нем тока 1А возникает сцепленный с ним полный магнитный поток, равный 1Вб.

Наиболее значительной индуктивностью обладает катушка индуктивности, состоящая из изолированного проводника, свернутого в спираль. Она используется в качестве одного из основных элементов колебательных контуров, накопителей электрической энергии и источников магнитного поля. Катушки индуктивности наводят импульсное (переменное) магнитное поле при магнитно-импульсной обработке продуктов питания, находящихся в стеклянных, бумажных или полиэтиленовых контейнерах. Этот современный метод позволяет, например, пастеризовать пиво так, что его срок хранения увеличивается в 7 раз. Единичный магнитный импульс уменьшает популяцию микроорганизмов, содержащихся в продуктах, на три порядка.

В качестве примера вычислим индуктивность соленоида. Пусть длина соленоида будет во много раз больше диаметра его витков, тогда его можно считать практически бесконечным. При протекании по виткам тока I внутри соленоида появляется однородное магнитное поле, индукция которого равна В = μμ0Ιn, где n- число витков на единицу длины соленоида. Магнитный  поток через каждый из витков по отдельности равен Фm1 = ВS, где S – площадь витка. Тогда полный магнитный поток через соленоид составит:

Фm = NФm = nℓBS = nℓμμ0nIS = n2ℓμμ0ΙS

Произведение n·ℓ дает полное число витков соленоида N. Сопоставив полученное выражение с Фm = LI, получим, что индуктивность соленоида L = n2ℓμμ0S = n2μμ0V (где V= ℓ·S – это объем соленоида). Следовательно, индуктивность соленоида пропорциональна квадрату числа витков на единицу длины, объему соленоида и магнитной проницаемости среды, в которой он находится.

Э.д.с. самоиндукции вычисляется следующим образом:


По правилу Ленца дополнительные токи самоиндукции всегда направлены так, чтобы противодействовать изменениям основного тока в цепи. Это приводит к тому, что установление тока при замыкании цепи (т.е. его возрастание от нуля) и убывание при размыкании происходит не мгновенно, а постепенно. В данной ситуации процессам возрастания и убывания тока препятствует ток самоиндукции и индуктивность контура является мерой его инертности по отношению к изменению тока. При быстром размыкании электрической цепи возникает большая э.д.с. самоиндукции, которая может вызвать пробой воздушного зазора (искру) между контактами выключателя и вывести его из строя.


Физика, начертательная геометрия - лекции и примеры решения задач