Физика в решение задач

Переменный ток

Установившиеся вынужденные электромагнитные колебания (см. § 147) можно рассматривать как протекание в цепи, содержащей резистор, катушку индуктивности и конденсатор, переменного тока. Переменный ток можно считать квазистационарным, т. е. для него мгновенные значения силы тока во всех сечениях цепи практически одинаковы, так как их изменения происходят достаточно медленно, а электромагнитные возмущения распространяются по цепи со скоростью, равной скорости света. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа, которые будут использованы применительно к переменным токам (эти законы уже использовались при рассмотрении электромагнитных колебаний).

Рассмотрим последовательно процессы, происходящие на участке цепи, содержащем резистор, катушку индуктивности и конденсатор, к концам которого приложено переменное напряжение

  (149.1)

где Um — амплитуда напряжения.

1. Переменный ток, текущий через резистор сопротивлением R (L®0, C®0) (рис. 213, а). При выполнении условия квазистационарности ток через резистор определяется законом Ома:

где амплитуда силы тока Im= Um/R.

Для наглядного изображения соотношений между переменными токами и напряжениями воспользуемся методом векторных диаграмм. На рис. 213, б дана векторная диаграмма амплитудных значений тока Im и напряжения Um на резисторе (сдвиг фаз между Im и Um равен нулю).

2. Переменный ток, текущий через катушку индуктивностью L (R®0, C®0) (рис. 214, а). Если в цепи приложено переменное напряжение (149.1), то в ней потечет переменный ток, в результате чего возникнет э.д.с. самоиндукции (см. (126.3)) . Тогда закон Ома (см. (100.3)) для рассматриваемого участка цепи имеет вид

откуда

  (149.2)

Так как внешнее напряжение приложено к катушке индуктивности, то

  (149.3)

есть падение напряжения на катушке. Из уравнения (149.2) следует, что

после интегрирования, учитывая, что постоянная интегрирования равна нулю (так как отсутствует постоянная составляющая тока), получим

  (149.4)

где Im= Um/(wL). Величина

  (149.5)

называется реактивным индуктивным сопротивлением (или индуктивным сопротивлением). Из выражения (149.5) вытекает, что для постоянного тока (w = 0) катушка индуктивности не имеет сопротивления. Подстановка значения Um=wLIm в выражение (149.2) с учетом (149.3) приводит к следующему значению падения напряжения на катушке индуктивности:

  (149.6)

Сравнение выражений (149.4) и (149.6) приводит к выводу, что падение напряжения UL опережает по фазе ток I, текущий через катушку, на p/2, что и показано на векторной диаграмме (рис. 214, б).

3. Переменный ток, текущий через конденсатор емкостью С (R®0, L®0) (рис. 215, в). Если переменное напряжение (149.1) приложено к конденсатору, то он все время перезаряжается, и в цепи течет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренебречь, то

Сила тока

 (149.7)

где

Величина

называется реактивным емкостным сопротивлением (или емкостным сопротивлением). Для постоянного тока (w = 0) RС = ¥, т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе

  (149.8)

Сравнение выражений (149.7) и (149.8) приводит к выводу, что падение напряжения UС отстает по фазе от текущего через конденсатор тока I на p/2. Это показано на векторной диаграмме (рис. 215, б).

4. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. На рис. 216, а представлен участок цепи, содержащий резистор сопротивлением R, катушку индуктивностью L и конденсатор емкостью С, к концам которого приложено переменное напряжение (149.1). В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и UC. На рис. 216, б представлена векторная диаграмма амплитуд падений напряжений на резисторе (UR), катушке (UL) и конденсаторе (UC). Амплитуда Um приложенного напряжения должна быть равна векторной сумме амплитуд этих падений напряжений. Как видно из рис. 216, б, угол j определяет разность фаз между напряжением и силой тока. Из рисунка следует, что (см. также формулу (147.16))

 (149.9)

Из прямоугольного треугольника получаем  откуда амплитуда силы тока имеет значение

  (149.10)

совпадающее с (147.15).

Следовательно, если напряжение в цепи изменяется по закону U = Um cos w t, то в цепи течет ток

  (149.11)

где j и Im определяются соответственно формулами (149.9) и (149.10). Величина

 (149.12)

называется полным сопротивлением цепи, а величина

– реактивным сопротивлением.

Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL в сумме равны приложенному напряжению U. Векторная диаграмма для данного случая представлена на рис. 217, из которого следует, что

  (149.13)

Выражения (149.9) и (149.10) совпадают с (149.13), если в них 1/(wC)=0, т.е. С=¥. Следовательно, отсутствие конденсатора в цепи означает С=¥, а не С=0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, получим цепь, в которой конденсатор отсутствует (расстояние между обкладками стремится к нулю, а емкость — к бесконечности; см. (94.3)).

Рассмотрим магнитное поле прямого тока:

 

Вычислим циркуляцию вектора по замкнутому контуру :

Итак:

 

 

 Если контур не охватывает ток, то

   циркуляция равна нулю.

  Обобщим закон на произвольное

 количество токов в контуре. Согласно принципу суперпозиции: 

 

 

, где алгебраическая сумма токов, охватываемых контуром.

Итак, циркуляция магнитного поля по замкнутому контуру равна алгебраической сумме токов, охватываемой им ,умноженной на :

Закон полного тока является интегральной формулировкой закона

Био-Савара и входит в систему уравнений Максвелла.

Знак  зависит от направления тока и обхода контура *. Если и  

составляют правовинтовую систему, то ток считается положительным:

 *   

   

Уравнения Максвелла для электромагнитного поля Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

Механические и электромагнитные колебания Гармонические колебания и их характеристики Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Рэлеем (1842—1919), А. Г. Столетовым, русским инженером-экспериментатором П. Н. Лебедевым (1866—1912). Большой вклад в развитие теории колебаний внесли Л. И. Мандельштам (1879—1944) и его ученики.

Механические гармонические колебания Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат.

Свободные гармонические колебания в колебательном контуре Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии

Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты w. Механические и электромагнитные колебания будем рассматривать одновременно, называя колеблющуюся величину либо смещением (х) колеблющегося тела из положения равновесия, либо зарядом (Q) конденсатора.

Резонанс напряжений Если в цепи переменного тока, содержащей последовательно включенные конденсатор, катушку индуктивности и резистор

Мощность, выделяемая в цепи переменного тока Мгновенное значение мощности переменного тока равно произведению мгновенных значений напряжения и силы тока


На главную