Математика задачи и примеры Найти объем тела Вычислить криволинейный интеграл Вычислить массу дуги кривой Вычислить расходимость (дивергенцию) Найти интеграл Вычислить тройной интеграл

Диффенцируемость ФНП

Пусть  определена в .

ФНП   называется дифференцируемой в точке , если выполнены соотношения

,

где  – приращение вектора аргументов;  – полное приращение функции  в точке  соответственно ; .

ПРИМЕР 1. Показать по определению дифференцируемость функции  в произвольной точке

Решение. Обозначим , , . Для произвольного  
приращение функции имеет вид 

.

Здесь вектор , функция , причем

, где ,  – соответственно углы между вектором   и осями координат .

ФНП , заданная на области , называется дифференцируемой на множестве , если она дифференцируемая в каждой точке этого множества.


Связь понятий "существование частных производных", "непрерывность" и "дифференцируемость" в точке для ФНП иная, чем для функции одной переменной, и может быть изображена в виде
следующей схемы

ПРИМЕР 2. Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Решение. Имеем ;

.

Абсолютная погрешность приближенного равенства  равна , относительная погрешность .

Рассмотренный пример демонстрирует тот факт, что для
дифференцируемой в точке  функции  справедливо приближенное равенство  с погрешностью .

Отсюда, в частности, имеем

,

т.е. этим соотношением функция  "линеаризована" в окрестности точки .

ПРИМЕР 3. Для  найти линейное
приближение в окрестности точки , .

Решение. Вычисляем ;

  в силу симметричного расположения переменных и их равных значений.

Итак,  или окончательно  
в окрестности точки .

Интегрирование дробно-рациональной функций

ПРИМЕР . Вычислить . РЕШЕНИЕ. Рационализируем интеграл заменой . Тогда ,  и . Выделим целую часть, правильную дробь разложим на сумму простейших дробей

Дифференциалы высших пррядков ФНП ПРИМЕР. Для функции . Найти ,  при произвольных  и . Решение. Вычисляем последовательно частные производные  и , а затем , ; . Ниже рассмотрены некоторые часто встречающиеся интегралы и применяемые для их вычисления подстановки Тригонометрические подстановки , ,  применяются в тех случаях, когда подынтегральное
выражение содержит радикалы , ,  или их степени.

Функции нескольких переменных ПРИМЕР . Выразить объем  цилиндра, радиус которого , высота , через эти переменные. Указать область определения функции. Ответ. , область определения – часть плоскости :

Диффенцирование неявно заданной функции

Интегрирование функций нескольких переменных С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и достаточные условия их существования.

Некоторые свойства интеграла ФНП Геометрические свойства интеграла ФНП

Некоторые механические примложения интеграла ФН Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)


Применение тройных интегралов. Масса неоднородного тела