Математика задачи и примеры Решить матричные уравнения Предел функции Математическая логика Неопределенный интеграл Определенные интегралы Двойной интеграл Изменить порядок интегрирования в интеграле

Задание 9. Разложить в ряд Лорана функцию  в окрестности особой точки .

Решение. Воспользуемся известным разложением:

.

Задание 10. Для функции  найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек.

a) ;

б) ;

в) .

Решение.

а). Особой точкой функции является точка . Чтобы определить вид особой точки разложим функцию в ряд Лорана по степеням :

Главная часть ряда Лорана содержит конечное число слагаемых, значит   - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

б). Особой точкой функции является точка . Чтобы определить вид особой точки используем признак поведения функции в особой точке.

, значит  устранимая точка и, следовательно .

в). Особой точкой функции является точка . Чтобы определить вид особой точки используем разложение функции в ряд Лорана по степеням :

Главная часть ряда Лорана содержит бесконечное число слагаемых, значит  - существенно особая точка. Тогда , т.к. коэффициент при  равен нулю.

 Основные свойства тройного интеграла.

1) Пусть  непрерывна в объемной области D и , то

2) Если k постоянная величина, то

3) Если  и   непрерывны в области DR3, то

4) Если для любых   DR3 выполняется неравенство: , то

Проверить, может ли функция  быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости .

Найти все лорановские разложения данной функции  по степеням . Указать главную и правильную части ряда.


Тройной интеграл в цилиндрических координатах