http://silverspoons.ru/?action=show&id=3631&p=catalog клейма и пробы серебра.
Математика задачи и примеры Найти объем тела Вычислить криволинейный интеграл Вычислить массу дуги кривой Вычислить расходимость (дивергенцию) Найти интеграл Вычислить тройной интеграл

Криволинейный интеграл второго рода

Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы   при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Напрвленные отрезки обозначим вектором , величину силы F в точке Мj обозначим Ft. Тогда скалярное произведение Fi • Mt - приближённое выражение работы силы  вдоль дуги Mi-1Mi Работа на всей кривой MN

Пусть - проекции вектора на оси координат, Δхi, Δуi, - проекции вектора . Запишем скалярное произведение в формуле (33) через проекции векторов:

Предел интегральной суммы (34) при стремлении к нулю наибольшей из длин частичных дуг кривой MN (n→∞) называется криволинейным интегралом от функций Р(х,у), Q(x,y) вдоль кривой MN по координатам х, у (иначе - криволинейным интегралом второго  рода). Обозначается такой интеграл

  и численно равен работе силы  на пути MN.

Криволинейные интегралы второго рода обладают такими же свойствами 1, 2, как и интегралы первого рода. В отличие от последних они зависят от направления обхода кривой. Если изменить направление обхода, то интеграл меняет знак:

Если контур интегрирования L замкнут, то положительным направлением обхода считается движение против часовой стрелки. При этом область, заключённая внутри контура остаётся слева по ходу движения.

Чтобы вычислить криволинейный интеграл второго рода, его нужно преобразовать в определённый с помощью уравнения кривой интегрирования. При этом:

если кривая MN задана уравнением у=у(х), то

если кривая MN задана уравнением х = х (у), то

если кривая MN задана параметрическими уравнениями х = х (t), у=у(t) при перемещении из точки М в точку N параметр t меняется от α до β, то

Важно подчеркнуть, что в нижнем пределе определённых интегралов (35) и (36) стоит координата точки начала, а в верхнем пределе - координата точки конца кривой интегрирования.

Криволинейный интеграл второго рода может быть задан на пространственной кривой, и тогда он имеет вид

Его можно преобразовать в определённый интеграл, если кривая интегрирования

задана параметрическими уравнениями х = х (t), у=у(t), z=z(t).

ЧАСТНЫЕ ПРОИЗВОДНЫЕ ФНП

Пусть , , .

Частные производные первого порядка функции  
вводятся соответственно соотношениям

 

и

.

ФНП дифференцируется отдельно по каждой переменной, при этом значения всех остальных переменных остаются неизменными.


Вычисление двойного интеграла в декартовых координатах